Systematische Modellentwicklung im Team mit DVC

Wir sprechen in diesem Vortrag über die systematische ML-Modellentwicklung mit DVC (Data Version Control).

Für die zielgerichtete Weiterentwicklung eines Modells brauchen wir exakte Kenntnis über Performance-Verbesserungen jeder Version. Eines der Core-Features von DVC ist, dass Trainingsdaten, Modelldefinition, Trainingscode, Konfiguration, das fertig trainierte Modell sowie dessen Performance-Metriken gemeinsam im gleichen System versioniert werden. Dabei baut der DVC-Workflow auf dem vertrauten Git-Workflow auf. DVC-Pipelines ermöglichen das vollständig reproduzierbare Training für jede Version.

Nach kurzer Einführung zeigt eine Live-Demo ein Team bei der gemeinsamen, verteilten Modellentwicklung.

Vorkenntnisse

Kenntnis der Git-Versionsverwaltung

Lernziele

Entdeckung neuer Tools und Workflows, die die Modellentwicklung im (verteilten) Team fördern und Nachverfolgbarkeit/Reproduzierbarkeit garantieren

Speaker

 

Bert Besser
Bert Besser ist IT-Consultant bei der codecentric AG und promovierte in theoretischer Informatik.

M3-Newsletter

Ihr möchtet über die Minds Mastering Machines
auf dem Laufenden gehalten werden?

 

Anmelden